En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
общая лексика
суточная периодичность
[,deɪlɪ'meɪl]
общая лексика
"Дейли мейл" (ежедневная газета консервативного направления; тир. ок. 1,6 млн. экз.; принадлежит концерну "Ассошиэйтед ньюспейперз" [Associated Newspapers]. Основана в 1896; с 1917 малоформатная газета [tabloid])
[,deɪlɪ'wə:kə]
общая лексика
"Дейли уоркер" (ежедневная газета; орган Коммунистической партии Великобритании [Communist Party of Great Britain]. Выходила с 1930 по 1966)
синоним
In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.
There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.